Nuprl Lemma : branch_wf2

[P:ℙ]. ∀[d:Dec(P)]. ∀[T:Type]. ∀[A:P ⟶ T]. ∀[B:⋂q:¬P. T].  (if p:P then A[p] else fi  ∈ T)


Proof




Definitions occuring in Statement :  branch: if p:P then A[p] else fi  decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] not: ¬A member: t ∈ T isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  branch: if p:P then A[p] else fi  decidable: Dec(P) or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] prop: so_apply: x[s]
Lemmas referenced :  not_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalHypSubstitution unionElimination thin sqequalRule isectEquality cut lemma_by_obid isectElimination hypothesisEquality hypothesis because_Cache functionEquality universeEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality applyEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}[d:Dec(P)].  \mforall{}[T:Type].  \mforall{}[A:P  {}\mrightarrow{}  T].  \mforall{}[B:\mcap{}q:\mneg{}P.  T].    (if  p:P  then  A[p]  else  B  fi    \mmember{}  T)



Date html generated: 2016_05_15-PM-03_28_12
Last ObjectModification: 2015_12_27-PM-01_09_11

Theory : general


Home Index