Nuprl Lemma : church-fst_wf
∀[A,T:Type].  (church-fst() ∈ ((T ⟶ Top ⟶ T) ⟶ A) ⟶ A)
Proof
Definitions occuring in Statement : 
church-fst: church-fst()
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
church-fst: church-fst()
Lemmas referenced : 
church-true_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,T:Type].    (church-fst()  \mmember{}  ((T  {}\mrightarrow{}  Top  {}\mrightarrow{}  T)  {}\mrightarrow{}  A)  {}\mrightarrow{}  A)
Date html generated:
2016_05_15-PM-03_22_20
Last ObjectModification:
2015_12_27-PM-01_04_47
Theory : general
Home
Index