Nuprl Lemma : continuous'-monotone-identity

continuous'-monotone{i:l}(T.T)


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
Definitions unfolded in proof :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) and: P ∧ Q cand: c∧ B type-monotone: Monotone(T.F[T]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B type-continuous': semi-continuous(λT.F[T]) so_lambda: λ2x.t[x] type-incr-chain: type-incr-chain{i:l}() so_apply: x[s]
Lemmas referenced :  subtype_rel_wf subtype_rel_self tunion_wf nat_wf type-incr-chain_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut isect_memberFormation introduction hypothesis sqequalRule axiomEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_pairFormation lambdaEquality applyEquality setElimination rename

Latex:
continuous'-monotone\{i:l\}(T.T)



Date html generated: 2016_05_15-PM-06_53_53
Last ObjectModification: 2015_12_27-AM-11_41_37

Theory : general


Home Index