Nuprl Lemma : csm-cmd_wf

[V:Type]. ∀[sm:CSM(V)].  (Cmd(sm) ∈ Type)


Proof




Definitions occuring in Statement :  csm-cmd: Cmd(sm) csm: CSM(V) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-cmd: Cmd(sm) pi1: fst(t) csm: CSM(V)
Lemmas referenced :  csm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].    (Cmd(sm)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-05_09_53
Last ObjectModification: 2015_12_27-PM-02_23_59

Theory : general


Home Index