Nuprl Lemma : csm-type_wf
∀[V:Type]. ∀[sm:CSM(V)]. ∀[i:V].  (Type(sm;i) ∈ Type)
Proof
Definitions occuring in Statement : 
csm-type: Type(sm;i)
, 
csm: CSM(V)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm: CSM(V)
, 
csm-type: Type(sm;i)
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
csm_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
isectElimination, 
because_Cache, 
lemma_by_obid, 
universeEquality
Latex:
\mforall{}[V:Type].  \mforall{}[sm:CSM(V)].  \mforall{}[i:V].    (Type(sm;i)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-05_10_39
Last ObjectModification:
2015_12_27-PM-02_23_30
Theory : general
Home
Index