Nuprl Lemma : decidable-exists-iseg

[T:Type]. ∀[P:(T List) ⟶ ℙ].  ((∀L:T List. Dec(P[L]))  (∀L:T List. Dec(∃L':T List. (L' ≤ L ∧ P[L']))))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  decidable__exists_iseg list_wf all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination dependent_functionElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))  {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(\mexists{}L':T  List.  (L'  \mleq{}  L  \mwedge{}  P[L']))))



Date html generated: 2016_05_15-PM-04_19_58
Last ObjectModification: 2015_12_27-PM-02_55_38

Theory : general


Home Index