Nuprl Lemma : decidable-exists-iseg
∀[T:Type]. ∀[P:(T List) ⟶ ℙ].  ((∀L:T List. Dec(P[L])) 
⇒ (∀L:T List. Dec(∃L':T List. (L' ≤ L ∧ P[L']))))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
decidable__exists_iseg, 
list_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))  {}\mRightarrow{}  (\mforall{}L:T  List.  Dec(\mexists{}L':T  List.  (L'  \mleq{}  L  \mwedge{}  P[L']))))
Date html generated:
2016_05_15-PM-04_19_58
Last ObjectModification:
2015_12_27-PM-02_55_38
Theory : general
Home
Index