Nuprl Lemma : decidable__implies_better

[P:ℙ]. ∀Q:⋂x:P. ℙ(Dec(P)  (P  Dec(Q))  Dec(P  Q))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q isect: x:A. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x]
Lemmas referenced :  decidable__implies decidable_wf isect_subtype_rel_trivial subtype_rel_weakening ext-eq_weakening subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache functionEquality applyEquality instantiate cumulativity sqequalRule universeEquality lambdaEquality independent_isectElimination dependent_pairFormation isectEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}Q:\mcap{}x:P.  \mBbbP{}.  (Dec(P)  {}\mRightarrow{}  (P  {}\mRightarrow{}  Dec(Q))  {}\mRightarrow{}  Dec(P  {}\mRightarrow{}  Q))



Date html generated: 2016_05_15-PM-03_37_42
Last ObjectModification: 2015_12_27-PM-01_15_27

Theory : general


Home Index