Nuprl Lemma : double-negation-shift_wf
∀A:ℕ ⟶ ℙ. (DNSi.A[i] ∈ ℙ)
Proof
Definitions occuring in Statement : 
double-negation-shift: DNSi.A[i]
, 
nat: ℕ
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
double-negation-shift: DNSi.A[i]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  (DNSi.A[i]  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-03_20_43
Last ObjectModification:
2015_12_27-PM-01_04_00
Theory : general
Home
Index