Nuprl Lemma : exists-simp-test

T:Type. ∀P:T ⟶ ℙ'. ∀a:T.  (∃x:T. (P[x] ∧ (x a ∈ T)) ⇐⇒ P[a])


Proof




Definitions occuring in Statement :  prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] prop: member: t ∈ T uall: [x:A]. B[x] so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  and_wf equal_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin cut hypothesis addLevel hyp_replacement equalitySymmetry sqequalRule dependent_set_memberEquality hypothesisEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename applyEquality levelHypothesis instantiate cumulativity lambdaEquality productEquality functionExtensionality universeEquality dependent_pairFormation because_Cache functionEquality

Latex:
\mforall{}T:Type.  \mforall{}P:T  {}\mrightarrow{}  \mBbbP{}'.  \mforall{}a:T.    (\mexists{}x:T.  (P[x]  \mwedge{}  (x  =  a))  \mLeftarrow{}{}\mRightarrow{}  P[a])



Date html generated: 2017_10_01-AM-09_10_43
Last ObjectModification: 2017_07_26-PM-04_47_02

Theory : general


Home Index