Step
*
1
1
of Lemma
exp-ratio_wf2
.....assertion.....
1. b : {2...}
2. k : ℕ
3. M : ℕ+
4. c : {n:ℕ| k < M * b^n}
5. n : ℕ
6. n ≤ c
⊢ ∀d:ℕ. ((d ≤ c)
⇒ (exp-ratio(1;b;c - d;k;M * b^c - d) ∈ {n:ℕ| k < M * b^n} ))
BY
{ (InductionOnNat THEN (D 0 THENA Auto) THEN RecUnfold `exp-ratio` 0 THEN (SplitOnConclITE THENA Auto))⋅ }
1
.....truecase.....
1. b : {2...}
2. k : ℕ
3. M : ℕ+
4. c : {n:ℕ| k < M * b^n}
5. n : ℕ
6. n ≤ c
7. d : ℤ
8. 0 ≤ c
9. k < M * b^c - 0
⊢ c - 0 ∈ {n:ℕ| k < M * b^n}
2
.....falsecase.....
1. b : {2...}
2. k : ℕ
3. M : ℕ+
4. c : {n:ℕ| k < M * b^n}
5. n : ℕ
6. n ≤ c
7. d : ℤ
8. 0 ≤ c
9. (M * b^c - 0) ≤ k
⊢ eval n' = (c - 0) + 1 in
eval p' = 1 * k in
eval q' = b * M * b^c - 0 in
exp-ratio(1;b;n';p';q') ∈ {n:ℕ| k < M * b^n}
3
.....truecase.....
1. b : {2...}
2. k : ℕ
3. M : ℕ+
4. c : {n:ℕ| k < M * b^n}
5. n : ℕ
6. n ≤ c
7. d : ℤ
8. 0 < d
9. ((d - 1) ≤ c)
⇒ (exp-ratio(1;b;c - d - 1;k;M * b^c - d - 1) ∈ {n:ℕ| k < M * b^n} )
10. d ≤ c
11. k < M * b^c - d
⊢ c - d ∈ {n:ℕ| k < M * b^n}
4
.....falsecase.....
1. b : {2...}
2. k : ℕ
3. M : ℕ+
4. c : {n:ℕ| k < M * b^n}
5. n : ℕ
6. n ≤ c
7. d : ℤ
8. 0 < d
9. ((d - 1) ≤ c)
⇒ (exp-ratio(1;b;c - d - 1;k;M * b^c - d - 1) ∈ {n:ℕ| k < M * b^n} )
10. d ≤ c
11. (M * b^c - d) ≤ k
⊢ eval n' = (c - d) + 1 in
eval p' = 1 * k in
eval q' = b * M * b^c - d in
exp-ratio(1;b;n';p';q') ∈ {n:ℕ| k < M * b^n}
Latex:
Latex:
.....assertion.....
1. b : \{2...\}
2. k : \mBbbN{}
3. M : \mBbbN{}\msupplus{}
4. c : \{n:\mBbbN{}| k < M * b\^{}n\}
5. n : \mBbbN{}
6. n \mleq{} c
\mvdash{} \mforall{}d:\mBbbN{}. ((d \mleq{} c) {}\mRightarrow{} (exp-ratio(1;b;c - d;k;M * b\^{}c - d) \mmember{} \{n:\mBbbN{}| k < M * b\^{}n\} ))
By
Latex:
(InductionOnNat
THEN (D 0 THENA Auto)
THEN RecUnfold `exp-ratio` 0
THEN (SplitOnConclITE THENA Auto))\mcdot{}
Home
Index