Step
*
2
1
of Lemma
exp_functionality_wrt_assoced
1. n : ℤ@i
2. [%1] : 0 < n@i
3. ∀x,y:ℤ. ((x ~ y)
⇒ (x^n - 1 ~ y^n - 1))@i
4. ¬(n = 0 ∈ ℤ)
⊢ ∀x,y@0:ℤ. ((x ~ y@0)
⇒ ((x * x^n - 1) ~ (y@0 * y@0^n - 1)))
BY
{ (ParallelOp (-2) THEN RepeatFor 2 (ParallelLast)) }
1
1. n : ℤ@i
2. [%1] : 0 < n@i
3. ∀x,y:ℤ. ((x ~ y)
⇒ (x^n - 1 ~ y^n - 1))@i
4. ¬(n = 0 ∈ ℤ)
5. x : ℤ@i
6. ∀y:ℤ. ((x ~ y)
⇒ (x^n - 1 ~ y^n - 1))
7. y@0 : ℤ@i
8. x ~ y@0@i
9. x^n - 1 ~ y@0^n - 1
⊢ (x * x^n - 1) ~ (y@0 * y@0^n - 1)
Latex:
Latex:
1. n : \mBbbZ{}@i
2. [\%1] : 0 < n@i
3. \mforall{}x,y:\mBbbZ{}. ((x \msim{} y) {}\mRightarrow{} (x\^{}n - 1 \msim{} y\^{}n - 1))@i
4. \mneg{}(n = 0)
\mvdash{} \mforall{}x,y@0:\mBbbZ{}. ((x \msim{} y@0) {}\mRightarrow{} ((x * x\^{}n - 1) \msim{} (y@0 * y@0\^{}n - 1)))
By
Latex:
(ParallelOp (-2) THEN RepeatFor 2 (ParallelLast))
Home
Index