Nuprl Lemma : exp_functionality_wrt_assoced

n:ℕ. ∀x,y:ℤ.  ((x y)  (x^n y^n))


Proof




Definitions occuring in Statement :  assoced: b exp: i^n nat: all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] exp: i^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  multiply_functionality_wrt_assoced assoced_functionality_wrt_assoced primrec-unroll assert_of_bnot eqff_to_assert iff_weakening_uiff not_wf bnot_wf bfalse_wf iff_transitivity int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert assert_wf btrue_wf equal_wf uiff_transitivity bool_wf eq_int_wf assoced_weakening exp0_lemma nat_wf primrec-wf2 less_than_wf set_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le exp_wf2 assoced_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination lemma_by_obid sqequalHypSubstitution isectElimination intEquality sqequalRule lambdaEquality because_Cache functionEquality hypothesisEquality hypothesis dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll introduction equalityElimination independent_functionElimination equalityTransitivity equalitySymmetry productElimination impliesFunctionality equalityEquality multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,y:\mBbbZ{}.    ((x  \msim{}  y)  {}\mRightarrow{}  (x\^{}n  \msim{}  y\^{}n))



Date html generated: 2016_05_15-PM-04_50_56
Last ObjectModification: 2016_01_16-AM-11_26_53

Theory : general


Home Index