Nuprl Lemma : filter-commutes

[T:Type]. ∀[P1,P2:T ⟶ 𝔹]. ∀[L:T List].  (filter(P1;filter(P2;L)) filter(P2;filter(P1;L)))


Proof




Definitions occuring in Statement :  filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  swap-filter-filter list_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalAxiom sqequalRule isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P1,P2:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    (filter(P1;filter(P2;L))  \msim{}  filter(P2;filter(P1;L)))



Date html generated: 2016_05_15-PM-03_40_17
Last ObjectModification: 2015_12_27-PM-01_16_42

Theory : general


Home Index