Nuprl Lemma : swap-filter-filter

[T:Type]. ∀[P1,P2:T ⟶ 𝔹]. ∀[L:T List].  (filter(P2;filter(P1;L)) filter(P1;filter(P2;L)))


Proof




Definitions occuring in Statement :  filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) band: p ∧b q ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  list_wf bool_wf istype-universe istype-void nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases filter_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf filter_cons_lemma eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot istype-nat filter-filter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis axiomSqEquality universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType instantiate universeEquality voidElimination lambdaFormation_alt setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination independent_pairFormation functionIsTypeImplies unionElimination promote_hyp hypothesis_subsumption productElimination equalityIstype because_Cache dependent_set_memberEquality_alt equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase equalityElimination cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[P1,P2:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    (filter(P2;filter(P1;L))  \msim{}  filter(P1;filter(P2;L)))



Date html generated: 2020_05_19-PM-09_43_04
Last ObjectModification: 2019_11_13-AM-09_48_42

Theory : list_1


Home Index