Nuprl Lemma : fseg-test
∀T:Type. ∀as,bs,cs:T List.
  ((fseg(T;as;as) ∧ (fseg(T;as;bs) ⇒ fseg(T;bs;cs) ⇒ fseg(T;as;cs))) ∧ as ≤ as ∧ (as ≤ bs ⇒ bs ≤ cs ⇒ as ≤ cs))
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2), 
iseg: l1 ≤ l2, 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
guard: {T}, 
prop: ℙ, 
label: ...$L... t, 
iseg: l1 ≤ l2, 
exists: ∃x:A. B[x]
Lemmas referenced : 
fseg_weakening, 
fseg_transitivity, 
fseg_wf, 
iseg_weakening, 
iseg_transitivity2, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
independent_pairFormation, 
independent_functionElimination, 
productElimination, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}as,bs,cs:T  List.
    ((fseg(T;as;as)  \mwedge{}  (fseg(T;as;bs)  {}\mRightarrow{}  fseg(T;bs;cs)  {}\mRightarrow{}  fseg(T;as;cs)))
    \mwedge{}  as  \mleq{}  as
    \mwedge{}  (as  \mleq{}  bs  {}\mRightarrow{}  bs  \mleq{}  cs  {}\mRightarrow{}  as  \mleq{}  cs))
Date html generated:
2016_05_15-PM-03_35_30
Last ObjectModification:
2015_12_27-PM-01_13_56
Theory : general
Home
Index