Nuprl Lemma : fseg-test

T:Type. ∀as,bs,cs:T List.
  ((fseg(T;as;as) ∧ (fseg(T;as;bs)  fseg(T;bs;cs)  fseg(T;as;cs))) ∧ as ≤ as ∧ (as ≤ bs  bs ≤ cs  as ≤ cs))


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) iseg: l1 ≤ l2 list: List all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q guard: {T} prop: label: ...$L... t iseg: l1 ≤ l2 exists: x:A. B[x]
Lemmas referenced :  fseg_weakening fseg_transitivity fseg_wf iseg_weakening iseg_transitivity2 iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination because_Cache independent_isectElimination hypothesis independent_pairFormation independent_functionElimination productElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}as,bs,cs:T  List.
    ((fseg(T;as;as)  \mwedge{}  (fseg(T;as;bs)  {}\mRightarrow{}  fseg(T;bs;cs)  {}\mRightarrow{}  fseg(T;as;cs)))
    \mwedge{}  as  \mleq{}  as
    \mwedge{}  (as  \mleq{}  bs  {}\mRightarrow{}  bs  \mleq{}  cs  {}\mRightarrow{}  as  \mleq{}  cs))



Date html generated: 2016_05_15-PM-03_35_30
Last ObjectModification: 2015_12_27-PM-01_13_56

Theory : general


Home Index