Nuprl Lemma : fseg_weakening

[T:Type]. ∀l1,l2:T List.  fseg(T;l1;l2) supposing l1 l2 ∈ (T List)


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T exists: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop:
Lemmas referenced :  nil_wf list_ind_nil_lemma equal_wf list_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename dependent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    fseg(T;l1;l2)  supposing  l1  =  l2



Date html generated: 2016_05_15-PM-03_34_46
Last ObjectModification: 2015_12_27-PM-01_13_42

Theory : general


Home Index