Nuprl Lemma : fseg_weakening
∀[T:Type]. ∀l1,l2:T List.  fseg(T;l1;l2) supposing l1 = l2 ∈ (T List)
Proof
Definitions occuring in Statement : 
fseg: fseg(T;L1;L2)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fseg: fseg(T;L1;L2)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
Lemmas referenced : 
nil_wf, 
list_ind_nil_lemma, 
equal_wf, 
list_wf, 
append_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
dependent_pairFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    fseg(T;l1;l2)  supposing  l1  =  l2
Date html generated:
2016_05_15-PM-03_34_46
Last ObjectModification:
2015_12_27-PM-01_13_42
Theory : general
Home
Index