Nuprl Lemma : fun-connected_weakening
∀[T:Type]. ∀f:T ⟶ T. ∀x,y:T.  (y = f+(x) 
⇒ y is f*(x))
Proof
Definitions occuring in Statement : 
strict-fun-connected: y = f+(x)
, 
fun-connected: y is f*(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
strict-fun-connected: y = f+(x)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
not_wf, 
equal_wf, 
fun-connected_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y:T.    (y  =  f+(x)  {}\mRightarrow{}  y  is  f*(x))
Date html generated:
2016_05_15-PM-05_02_53
Last ObjectModification:
2015_12_27-PM-02_29_43
Theory : general
Home
Index