Nuprl Lemma : fun-connected_weakening

[T:Type]. ∀f:T ⟶ T. ∀x,y:T.  (y f+(x)  is f*(x))


Proof




Definitions occuring in Statement :  strict-fun-connected: f+(x) fun-connected: is f*(x) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  strict-fun-connected: f+(x) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T prop:
Lemmas referenced :  and_wf not_wf equal_wf fun-connected_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin hypothesis cut lemma_by_obid isectElimination hypothesisEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x,y:T.    (y  =  f+(x)  {}\mRightarrow{}  y  is  f*(x))



Date html generated: 2016_05_15-PM-05_02_53
Last ObjectModification: 2015_12_27-PM-02_29_43

Theory : general


Home Index