Nuprl Lemma : fun_with_inv_is_bij2
∀[A,B:Type]. ∀f:A ⟶ B. ((∃g:B ⟶ A. InvFuns(A;B;f;g))
⇒ Bij(A;B;f))
Proof
Definitions occuring in Statement :
biject: Bij(A;B;f)
,
inv_funs: InvFuns(A;B;f;g)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
fun_with_inv_is_bij,
exists_wf,
inv_funs_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
cut,
lemma_by_obid,
isectElimination,
hypothesisEquality,
dependent_functionElimination,
independent_isectElimination,
hypothesis,
functionEquality,
sqequalRule,
lambdaEquality,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}f:A {}\mrightarrow{} B. ((\mexists{}g:B {}\mrightarrow{} A. InvFuns(A;B;f;g)) {}\mRightarrow{} Bij(A;B;f))
Date html generated:
2016_05_15-PM-03_21_54
Last ObjectModification:
2015_12_27-PM-01_04_33
Theory : general
Home
Index