Nuprl Lemma : infinite-domain-example

[A,D:Type]. ∀[R,Eq:D ⟶ D ⟶ ℙ].
  ((∀x,y,z:D.  (R[x;y]  (R[y;z] ∨ Eq[y;z])  R[x;z]))
   (∀x:D. (R[x;x]  A))
   (∀x:D. ∃y:D. R[x;y])
   (∃m:D. ∀x:D. ((Eq[x;m]  A)  R[x;m]))
   A)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q exists: x:A. B[x] all: x:A. B[x] member: t ∈ T prop: so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} or: P ∨ Q
Lemmas referenced :  exists_wf all_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis dependent_functionElimination hypothesisEquality independent_functionElimination applyEquality lemma_by_obid isectElimination sqequalRule lambdaEquality functionEquality cumulativity universeEquality inrFormation inlFormation

Latex:
\mforall{}[A,D:Type].  \mforall{}[R,Eq:D  {}\mrightarrow{}  D  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y,z:D.    (R[x;y]  {}\mRightarrow{}  (R[y;z]  \mvee{}  Eq[y;z])  {}\mRightarrow{}  R[x;z]))
    {}\mRightarrow{}  (\mforall{}x:D.  (R[x;x]  {}\mRightarrow{}  A))
    {}\mRightarrow{}  (\mforall{}x:D.  \mexists{}y:D.  R[x;y])
    {}\mRightarrow{}  (\mexists{}m:D.  \mforall{}x:D.  ((Eq[x;m]  {}\mRightarrow{}  A)  {}\mRightarrow{}  R[x;m]))
    {}\mRightarrow{}  A)



Date html generated: 2016_05_15-PM-07_21_57
Last ObjectModification: 2015_12_27-AM-11_25_53

Theory : general


Home Index