Nuprl Lemma : injection-bijection
∀n:ℕ. ∀f:ℕn →⟶ ℕn.  Bij(ℕn;ℕn;f)
Proof
Definitions occuring in Statement : 
injection: A →⟶ B
, 
biject: Bij(A;B;f)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
injection: A →⟶ B
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
uimplies: b supposing a
Lemmas referenced : 
injection-is-surjection, 
sq_stable__inject, 
nat_wf, 
int_seg_wf, 
injection_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    Bij(\mBbbN{}n;\mBbbN{}n;f)
Date html generated:
2016_05_15-PM-06_11_10
Last ObjectModification:
2016_01_16-PM-00_45_51
Theory : general
Home
Index