Nuprl Lemma : injection-bijection

n:ℕ. ∀f:ℕn →⟶ ℕn.  Bij(ℕn;ℕn;f)


Proof




Definitions occuring in Statement :  injection: A →⟶ B biject: Bij(A;B;f) int_seg: {i..j-} nat: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] injection: A →⟶ B biject: Bij(A;B;f) and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] nat: sq_stable: SqStable(P) implies:  Q squash: T uimplies: supposing a
Lemmas referenced :  injection-is-surjection sq_stable__inject nat_wf int_seg_wf injection_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename independent_pairFormation hypothesis lemma_by_obid isectElimination natural_numberEquality hypothesisEquality independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination dependent_functionElimination independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  \mrightarrow{}{}\mrightarrow{}  \mBbbN{}n.    Bij(\mBbbN{}n;\mBbbN{}n;f)



Date html generated: 2016_05_15-PM-06_11_10
Last ObjectModification: 2016_01_16-PM-00_45_51

Theory : general


Home Index