Nuprl Lemma : int-palindrome-test_wf

[L:ℤ List]. (int-palindrome-test(L) ∈ 𝔹)


Proof




Definitions occuring in Statement :  int-palindrome-test: int-palindrome-test(L) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  int-palindrome-test-sq palindrome-test_wf int-deq_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[L:\mBbbZ{}  List].  (int-palindrome-test(L)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-07_37_54
Last ObjectModification: 2015_12_27-AM-11_16_01

Theory : general


Home Index