Nuprl Lemma : int-palindrome-test_wf
∀[L:ℤ List]. (int-palindrome-test(L) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
int-palindrome-test: int-palindrome-test(L)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
int-palindrome-test-sq, 
palindrome-test_wf, 
int-deq_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L:\mBbbZ{}  List].  (int-palindrome-test(L)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-07_37_54
Last ObjectModification:
2015_12_27-AM-11_16_01
Theory : general
Home
Index