Nuprl Lemma : int-palindrome-test-sq

[L:ℤ List]. (int-palindrome-test(L) palindrome-test(IntDeq;L))


Proof




Definitions occuring in Statement :  int-palindrome-test: int-palindrome-test(L) palindrome-test: palindrome-test(eq;L) list: List int-deq: IntDeq uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-palindrome-test: int-palindrome-test(L) palindrome-test: palindrome-test(eq;L) taba: taba(init;x,x',a.F[x; x'; a];l) pi1: fst(t) list_ind: list_ind band: p ∧b q ifthenelse: if then else fi  so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T int-deq: IntDeq eq_int: (i =z j) btrue: tt it: bfalse: ff
Lemmas referenced :  list_wf lifting-strict-int_eq is-exception_wf base_wf has-value_wf_base lifting-strict-decide
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom intEquality

Latex:
\mforall{}[L:\mBbbZ{}  List].  (int-palindrome-test(L)  \msim{}  palindrome-test(IntDeq;L))



Date html generated: 2016_05_15-PM-07_37_39
Last ObjectModification: 2016_01_16-AM-09_35_25

Theory : general


Home Index