Nuprl Lemma : int-palindrome-test-sq
∀[L:ℤ List]. (int-palindrome-test(L) ~ palindrome-test(IntDeq;L))
Proof
Definitions occuring in Statement : 
int-palindrome-test: int-palindrome-test(L)
, 
palindrome-test: palindrome-test(eq;L)
, 
list: T List
, 
int-deq: IntDeq
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-palindrome-test: int-palindrome-test(L)
, 
palindrome-test: palindrome-test(eq;L)
, 
taba: taba(init;x,x',a.F[x; x'; a];l)
, 
pi1: fst(t)
, 
list_ind: list_ind, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
int-deq: IntDeq
, 
eq_int: (i =z j)
, 
btrue: tt
, 
it: ⋅
, 
bfalse: ff
Lemmas referenced : 
list_wf, 
lifting-strict-int_eq, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-decide
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom, 
intEquality
Latex:
\mforall{}[L:\mBbbZ{}  List].  (int-palindrome-test(L)  \msim{}  palindrome-test(IntDeq;L))
Date html generated:
2016_05_15-PM-07_37_39
Last ObjectModification:
2016_01_16-AM-09_35_25
Theory : general
Home
Index