Nuprl Lemma : l-ordered-sublist

[A:Type]. ∀R:A ⟶ A ⟶ ℙ. ∀as,bs:A List.  (as ⊆ bs  l-ordered(A;x,y.R[x;y];bs)  l-ordered(A;x,y.R[x;y];as))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q l-ordered: l-ordered(T;x,y.R[x; y];L) member: t ∈ T guard: {T} prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  l_before_sublist l_before_wf l-ordered_wf sublist_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality independent_functionElimination lemma_by_obid isectElimination because_Cache sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type]
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:A  List.
        (as  \msubseteq{}  bs  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];bs)  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];as))



Date html generated: 2016_05_15-PM-04_38_57
Last ObjectModification: 2015_12_27-PM-02_42_01

Theory : general


Home Index