Nuprl Lemma : l-ordered-sublist
∀[A:Type]. ∀R:A ⟶ A ⟶ ℙ. ∀as,bs:A List.  (as ⊆ bs 
⇒ l-ordered(A;x,y.R[x;y];bs) 
⇒ l-ordered(A;x,y.R[x;y];as))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
l_before_sublist, 
l_before_wf, 
l-ordered_wf, 
sublist_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type]
    \mforall{}R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}as,bs:A  List.
        (as  \msubseteq{}  bs  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];bs)  {}\mRightarrow{}  l-ordered(A;x,y.R[x;y];as))
Date html generated:
2016_05_15-PM-04_38_57
Last ObjectModification:
2015_12_27-PM-02_42_01
Theory : general
Home
Index