Nuprl Lemma : list_accum_pair_wf
∀[T,A,B:Type]. ∀[a0:A]. ∀[b0:B]. ∀[f:A ⟶ T ⟶ A]. ∀[g:B ⟶ T ⟶ B]. ∀[L:T List].
  (list_accum_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L) ∈ A × B)
Proof
Definitions occuring in Statement : 
list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productEquality, 
independent_pairEquality, 
lambdaEquality, 
spreadEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,A,B:Type].  \mforall{}[a0:A].  \mforall{}[b0:B].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[g:B  {}\mrightarrow{}  T  {}\mrightarrow{}  B].  \mforall{}[L:T  List].
    (list\_accum\_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L)  \mmember{}  A  \mtimes{}  B)
Date html generated:
2016_05_15-PM-03_47_46
Last ObjectModification:
2015_12_27-PM-01_21_26
Theory : general
Home
Index