Nuprl Lemma : list_accum_pair_wf

[T,A,B:Type]. ∀[a0:A]. ∀[b0:B]. ∀[f:A ⟶ T ⟶ A]. ∀[g:B ⟶ T ⟶ B]. ∀[L:T List].
  (list_accum_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L) ∈ A × B)


Proof




Definitions occuring in Statement :  list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_accum_pair: list_accum_pair(a,x.f[a; x];b,x.g[b; x];a0;b0;L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality independent_pairEquality lambdaEquality spreadEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T,A,B:Type].  \mforall{}[a0:A].  \mforall{}[b0:B].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[g:B  {}\mrightarrow{}  T  {}\mrightarrow{}  B].  \mforall{}[L:T  List].
    (list\_accum\_pair(a,x.f[a;x];b,x.g[b;x];a0;b0;L)  \mmember{}  A  \mtimes{}  B)



Date html generated: 2016_05_15-PM-03_47_46
Last ObjectModification: 2015_12_27-PM-01_21_26

Theory : general


Home Index