Nuprl Lemma : map-decide
∀[b,f,L1,L2:Top].
  (map(f;case b of inl(a) => L1[a] | inr(a) => L2[a]) ~ case b of inl(a) => map(f;L1[a]) | inr(a) => map(f;L2[a]))
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
map: map(f;as)
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-decide
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
introduction, 
callbyvalueExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
because_Cache, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[b,f,L1,L2:Top].
    (map(f;case  b  of  inl(a)  =>  L1[a]  |  inr(a)  =>  L2[a])  \msim{}  case  b
      of  inl(a)  =>
      map(f;L1[a])
      |  inr(a)  =>
      map(f;L2[a]))
Date html generated:
2016_05_15-PM-04_33_16
Last ObjectModification:
2016_01_16-AM-11_16_26
Theory : general
Home
Index