Nuprl Lemma : mapfilter-as-accum

[A:Type]. ∀[L:A List]. ∀[p:A ⟶ 𝔹]. ∀[f:Top].
  (mapfilter(f;p;L) accumulate (with value and list item x):
                       if p[x] then [f[x]] else fi 
                      over list:
                        L
                      with starting value:
                       []))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) append: as bs list_accum: list_accum cons: [a b] nil: [] list: List ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  mapfilter-as-accum-aux nil_wf top_wf list_ind_nil_lemma bool_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalAxiom because_Cache functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[p:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:Top].
    (mapfilter(f;p;L)  \msim{}  accumulate  (with  value  a  and  list  item  x):
                                              if  p[x]  then  a  @  [f[x]]  else  a  fi 
                                            over  list:
                                                L
                                            with  starting  value:
                                              []))



Date html generated: 2016_05_15-PM-03_56_28
Last ObjectModification: 2015_12_27-PM-03_09_05

Theory : general


Home Index