Nuprl Lemma : merge_wf
∀[T:Type]. ∀[as,bs:T List].  (merge(as;bs) ∈ T List) supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
merge: merge(as;bs)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
merge: merge(as;bs)
Lemmas referenced : 
reduce_wf, 
list_wf, 
s-insert_wf, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (merge(as;bs)  \mmember{}  T  List)  supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2016_05_15-PM-03_52_25
Last ObjectModification:
2015_12_27-PM-01_23_29
Theory : general
Home
Index