Nuprl Lemma : not-false
uiff(¬False;True)
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
not: ¬A
,
false: False
,
true: True
Definitions unfolded in proof :
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
true: True
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
Lemmas referenced :
not_wf,
false_wf,
true_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
independent_pairFormation,
isect_memberFormation,
introduction,
cut,
natural_numberEquality,
sqequalRule,
sqequalHypSubstitution,
axiomEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
lemma_by_obid,
isectElimination,
thin,
lambdaFormation,
voidElimination,
lambdaEquality,
dependent_functionElimination,
hypothesisEquality
Latex:
uiff(\mneg{}False;True)
Date html generated:
2016_05_15-PM-03_27_05
Last ObjectModification:
2015_12_27-PM-01_08_10
Theory : general
Home
Index