Nuprl Lemma : oob-hasright_wf

[B,A:Type]. ∀[x:one_or_both(A;B)].  (oob-hasright(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  oob-hasright: oob-hasright(x) one_or_both: one_or_both(A;B) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T oob-hasright: oob-hasright(x)
Lemmas referenced :  bor_wf oobright?_wf oobboth?_wf one_or_both_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[B,A:Type].  \mforall{}[x:one\_or\_both(A;B)].    (oob-hasright(x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-05_36_19
Last ObjectModification: 2015_12_27-PM-02_07_06

Theory : general


Home Index