Nuprl Lemma : oob-hasright_wf
∀[B,A:Type]. ∀[x:one_or_both(A;B)].  (oob-hasright(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
oob-hasright: oob-hasright(x)
, 
one_or_both: one_or_both(A;B)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
oob-hasright: oob-hasright(x)
Lemmas referenced : 
bor_wf, 
oobright?_wf, 
oobboth?_wf, 
one_or_both_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[B,A:Type].  \mforall{}[x:one\_or\_both(A;B)].    (oob-hasright(x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-05_36_19
Last ObjectModification:
2015_12_27-PM-02_07_06
Theory : general
Home
Index