Nuprl Lemma : oob-hasright_wf
∀[B,A:Type]. ∀[x:one_or_both(A;B)]. (oob-hasright(x) ∈ 𝔹)
Proof
Definitions occuring in Statement :
oob-hasright: oob-hasright(x)
,
one_or_both: one_or_both(A;B)
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
oob-hasright: oob-hasright(x)
Lemmas referenced :
bor_wf,
oobright?_wf,
oobboth?_wf,
one_or_both_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache,
universeEquality
Latex:
\mforall{}[B,A:Type]. \mforall{}[x:one\_or\_both(A;B)]. (oob-hasright(x) \mmember{} \mBbbB{})
Date html generated:
2016_05_15-PM-05_36_19
Last ObjectModification:
2015_12_27-PM-02_07_06
Theory : general
Home
Index