Nuprl Lemma : oobboth?_wf

[A,B:Type]. ∀[x:one_or_both(A;B)].  (oobboth?(x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  oobboth?: oobboth?(x) one_or_both: one_or_both(A;B) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T oobboth?: oobboth?(x) subtype_rel: A ⊆B uimplies: supposing a top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  one_or_both_ind_wf bool_wf top_wf oob-subtype btrue_wf bfalse_wf one_or_both_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination hypothesis hypothesisEquality applyEquality because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality productEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    (oobboth?(x)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_15-PM-05_33_34
Last ObjectModification: 2015_12_27-PM-02_08_43

Theory : general


Home Index