Nuprl Lemma : oobboth?_wf
∀[A,B:Type]. ∀[x:one_or_both(A;B)].  (oobboth?(x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
oobboth?: oobboth?(x)
, 
one_or_both: one_or_both(A;B)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
oobboth?: oobboth?(x)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
one_or_both_ind_wf, 
bool_wf, 
top_wf, 
oob-subtype, 
btrue_wf, 
bfalse_wf, 
one_or_both_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    (oobboth?(x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_15-PM-05_33_34
Last ObjectModification:
2015_12_27-PM-02_08_43
Theory : general
Home
Index