Nuprl Lemma : oob-subtype
∀[A1,B1,A2,B2:Type].  (one_or_both(A1;B1) ⊆r one_or_both(A2;B2)) supposing ((A1 ⊆r A2) and (B1 ⊆r B2))
Proof
Definitions occuring in Statement : 
one_or_both: one_or_both(A;B)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
one_or_both: one_or_both(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_union, 
subtype_rel_product, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesisEquality, 
unionEquality, 
independent_isectElimination, 
lambdaEquality, 
hypothesis, 
lambdaFormation, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A1,B1,A2,B2:Type].
    (one\_or\_both(A1;B1)  \msubseteq{}r  one\_or\_both(A2;B2))  supposing  ((A1  \msubseteq{}r  A2)  and  (B1  \msubseteq{}r  B2))
Date html generated:
2016_05_15-PM-05_31_12
Last ObjectModification:
2015_12_27-PM-02_10_19
Theory : general
Home
Index