Nuprl Lemma : oob-subtype

[A1,B1,A2,B2:Type].  (one_or_both(A1;B1) ⊆one_or_both(A2;B2)) supposing ((A1 ⊆A2) and (B1 ⊆B2))


Proof




Definitions occuring in Statement :  one_or_both: one_or_both(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  one_or_both: one_or_both(A;B) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_union subtype_rel_product subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesisEquality unionEquality independent_isectElimination lambdaEquality hypothesis lambdaFormation because_Cache axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A1,B1,A2,B2:Type].
    (one\_or\_both(A1;B1)  \msubseteq{}r  one\_or\_both(A2;B2))  supposing  ((A1  \msubseteq{}r  A2)  and  (B1  \msubseteq{}r  B2))



Date html generated: 2016_05_15-PM-05_31_12
Last ObjectModification: 2015_12_27-PM-02_10_19

Theory : general


Home Index