Nuprl Lemma : oob-left-or-right
∀[B,A:Type].  ∀x:one_or_both(A;B). ((↑oob-hasleft(x)) ∨ (↑oob-hasright(x)))
Proof
Definitions occuring in Statement : 
oob-hasright: oob-hasright(x)
, 
oob-hasleft: oob-hasleft(x)
, 
one_or_both: one_or_both(A;B)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
oob-hasright: oob-hasright(x)
, 
oob-hasleft: oob-hasleft(x)
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
oobleft?: oobleft?(x)
, 
oobboth?: oobboth?(x)
, 
oobright?: oobright?(x)
, 
top: Top
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
assert: ↑b
, 
btrue: tt
, 
or: P ∨ Q
, 
true: True
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
one_or_both-induction, 
or_wf, 
assert_wf, 
bor_wf, 
oobleft?_wf, 
oobboth?_wf, 
oobright?_wf, 
one_or_both_wf, 
one_or_both_ind_oobboth_lemma, 
true_wf, 
one_or_both_oobleft_lemma, 
false_wf, 
one_or_both_ind_oobright_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inlFormation, 
natural_numberEquality, 
productEquality, 
because_Cache, 
inrFormation, 
universeEquality
Latex:
\mforall{}[B,A:Type].    \mforall{}x:one\_or\_both(A;B).  ((\muparrow{}oob-hasleft(x))  \mvee{}  (\muparrow{}oob-hasright(x)))
Date html generated:
2016_05_15-PM-05_36_51
Last ObjectModification:
2015_12_27-PM-02_06_54
Theory : general
Home
Index