Nuprl Lemma : oob-left-or-right

[B,A:Type].  ∀x:one_or_both(A;B). ((↑oob-hasleft(x)) ∨ (↑oob-hasright(x)))


Proof




Definitions occuring in Statement :  oob-hasright: oob-hasright(x) oob-hasleft: oob-hasleft(x) one_or_both: one_or_both(A;B) assert: b uall: [x:A]. B[x] all: x:A. B[x] or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] oob-hasright: oob-hasright(x) oob-hasleft: oob-hasleft(x) so_apply: x[s] implies:  Q oobleft?: oobleft?(x) oobboth?: oobboth?(x) oobright?: oobright?(x) top: Top bor: p ∨bq ifthenelse: if then else fi  bfalse: ff assert: b btrue: tt or: P ∨ Q true: True prop: guard: {T}
Lemmas referenced :  one_or_both-induction or_wf assert_wf bor_wf oobleft?_wf oobboth?_wf oobright?_wf one_or_both_wf one_or_both_ind_oobboth_lemma true_wf one_or_both_oobleft_lemma false_wf one_or_both_ind_oobright_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality inlFormation natural_numberEquality productEquality because_Cache inrFormation universeEquality

Latex:
\mforall{}[B,A:Type].    \mforall{}x:one\_or\_both(A;B).  ((\muparrow{}oob-hasleft(x))  \mvee{}  (\muparrow{}oob-hasright(x)))



Date html generated: 2016_05_15-PM-05_36_51
Last ObjectModification: 2015_12_27-PM-02_06_54

Theory : general


Home Index