Nuprl Lemma : oobboth-bval_wf

[A,B:Type]. ∀[x:one_or_both(A;B)].  oobboth-bval(x) ∈ A × supposing ↑oobboth?(x)


Proof




Definitions occuring in Statement :  oobboth-bval: oobboth-bval(x) oobboth?: oobboth?(x) one_or_both: one_or_both(A;B) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a oobboth-bval: oobboth-bval(x) one_or_both: one_or_both(A;B) oobboth: oobboth(bval) oobboth?: oobboth?(x) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt implies:  Q oobleft: oobleft(lval) bfalse: ff false: False oobright: oobright(rval)
Lemmas referenced :  one_or_both_ind_oobboth_lemma istype-true one_or_both_oobleft_lemma istype-void one_or_both_ind_oobright_lemma istype-assert oobboth?_wf one_or_both_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin sqequalHypSubstitution unionElimination productElimination extract_by_obid dependent_functionElimination Error :memTop,  hypothesis lambdaFormation_alt independent_pairEquality hypothesisEquality voidElimination independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    oobboth-bval(x)  \mmember{}  A  \mtimes{}  B  supposing  \muparrow{}oobboth?(x)



Date html generated: 2020_05_20-AM-08_11_19
Last ObjectModification: 2020_01_28-PM-04_27_42

Theory : general


Home Index