Nuprl Lemma : oobboth-bval_wf
∀[A,B:Type]. ∀[x:one_or_both(A;B)].  oobboth-bval(x) ∈ A × B supposing ↑oobboth?(x)
Proof
Definitions occuring in Statement : 
oobboth-bval: oobboth-bval(x)
, 
oobboth?: oobboth?(x)
, 
one_or_both: one_or_both(A;B)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
oobboth-bval: oobboth-bval(x)
, 
one_or_both: one_or_both(A;B)
, 
oobboth: oobboth(bval)
, 
oobboth?: oobboth?(x)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
implies: P 
⇒ Q
, 
oobleft: oobleft(lval)
, 
bfalse: ff
, 
false: False
, 
oobright: oobright(rval)
Lemmas referenced : 
one_or_both_ind_oobboth_lemma, 
istype-true, 
one_or_both_oobleft_lemma, 
istype-void, 
one_or_both_ind_oobright_lemma, 
istype-assert, 
oobboth?_wf, 
one_or_both_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
productElimination, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
lambdaFormation_alt, 
independent_pairEquality, 
hypothesisEquality, 
voidElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    oobboth-bval(x)  \mmember{}  A  \mtimes{}  B  supposing  \muparrow{}oobboth?(x)
Date html generated:
2020_05_20-AM-08_11_19
Last ObjectModification:
2020_01_28-PM-04_27_42
Theory : general
Home
Index