Nuprl Lemma : oobright-rval_wf

[A,B:Type]. ∀[x:one_or_both(A;B)].  oobright-rval(x) ∈ supposing ↑oobright?(x)


Proof




Definitions occuring in Statement :  oobright-rval: oobright-rval(x) oobright?: oobright?(x) one_or_both: one_or_both(A;B) assert: b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a oobright-rval: oobright-rval(x) one_or_both: one_or_both(A;B) oobboth: oobboth(bval) oobright?: oobright?(x) all: x:A. B[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s] assert: b ifthenelse: if then else fi  bfalse: ff implies:  Q false: False prop: oobleft: oobleft(lval) oobright: oobright(rval) btrue: tt
Lemmas referenced :  one_or_both_ind_oobboth_lemma false_wf one_or_both_oobleft_lemma one_or_both_ind_oobright_lemma true_wf assert_wf oobright?_wf one_or_both_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin sqequalHypSubstitution unionElimination productElimination lemma_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis lambdaFormation hypothesisEquality independent_functionElimination equalityTransitivity equalitySymmetry axiomEquality isectElimination because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    oobright-rval(x)  \mmember{}  B  supposing  \muparrow{}oobright?(x)



Date html generated: 2016_05_15-PM-05_35_15
Last ObjectModification: 2015_12_27-PM-02_07_28

Theory : general


Home Index