Nuprl Lemma : oobright-rval_wf
∀[A,B:Type]. ∀[x:one_or_both(A;B)].  oobright-rval(x) ∈ B supposing ↑oobright?(x)
Proof
Definitions occuring in Statement : 
oobright-rval: oobright-rval(x)
, 
oobright?: oobright?(x)
, 
one_or_both: one_or_both(A;B)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
oobright-rval: oobright-rval(x)
, 
one_or_both: one_or_both(A;B)
, 
oobboth: oobboth(bval)
, 
oobright?: oobright?(x)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
oobleft: oobleft(lval)
, 
oobright: oobright(rval)
, 
btrue: tt
Lemmas referenced : 
one_or_both_ind_oobboth_lemma, 
false_wf, 
one_or_both_oobleft_lemma, 
one_or_both_ind_oobright_lemma, 
true_wf, 
assert_wf, 
oobright?_wf, 
one_or_both_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
productElimination, 
lemma_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[x:one\_or\_both(A;B)].    oobright-rval(x)  \mmember{}  B  supposing  \muparrow{}oobright?(x)
Date html generated:
2016_05_15-PM-05_35_15
Last ObjectModification:
2015_12_27-PM-02_07_28
Theory : general
Home
Index