Nuprl Lemma : p-compose-id
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)].  (f o p-id() = f ∈ (A ⟶ (B + Top)))
Proof
Definitions occuring in Statement : 
p-id: p-id()
, 
p-compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-id: p-id()
, 
p-compose: f o g
, 
do-apply: do-apply(f;x)
, 
can-apply: can-apply(f;x)
, 
isl: isl(x)
, 
outl: outl(x)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
unionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].    (f  o  p-id()  =  f)
Date html generated:
2016_05_15-PM-03_29_58
Last ObjectModification:
2015_12_27-PM-01_10_17
Theory : general
Home
Index