Nuprl Lemma : p_first_nil_lemma
∀x:Top. (can-apply(p-first([]);x) ~ ff)
Proof
Definitions occuring in Statement : 
p-first: p-first(L), 
can-apply: can-apply(f;x), 
nil: [], 
bfalse: ff, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
p-first: p-first(L), 
can-apply: can-apply(f;x), 
top: Top, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
isl: isl(x)
Lemmas referenced : 
top_wf, 
list_accum_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x:Top.  (can-apply(p-first([]);x)  \msim{}  ff)
Date html generated:
2016_05_15-PM-03_30_23
Last ObjectModification:
2015_12_27-PM-01_10_20
Theory : general
Home
Index