Nuprl Lemma : p_first_nil_lemma

x:Top. (can-apply(p-first([]);x) ff)


Proof




Definitions occuring in Statement :  p-first: p-first(L) can-apply: can-apply(f;x) nil: [] bfalse: ff top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T p-first: p-first(L) can-apply: can-apply(f;x) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] isl: isl(x)
Lemmas referenced :  top_wf list_accum_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x:Top.  (can-apply(p-first([]);x)  \msim{}  ff)



Date html generated: 2016_05_15-PM-03_30_23
Last ObjectModification: 2015_12_27-PM-01_10_20

Theory : general


Home Index