Nuprl Lemma : pairwise-map2
∀[T,T':Type].
  ∀L:T List. ∀f:{t:T| (t ∈ L)}  ⟶ T'.  ∀[P:T' ⟶ T' ⟶ ℙ']. ((∀x,y∈map(f;L).  P[x;y]) 
⇐⇒ (∀x,y∈L.  P[f x;f y]))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
pairwise-map, 
l_member_wf, 
list_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
setEquality
Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{t:T|  (t  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}map(f;L).    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[f  x;f  y]))
Date html generated:
2016_05_15-PM-03_59_27
Last ObjectModification:
2015_12_27-PM-03_05_52
Theory : general
Home
Index