Nuprl Lemma : pairwise-map2

[T,T':Type].
  ∀L:T List. ∀f:{t:T| (t ∈ L)}  ⟶ T'.  ∀[P:T' ⟶ T' ⟶ ℙ']. ((∀x,y∈map(f;L).  P[x;y]) ⇐⇒ (∀x,y∈L.  P[f x;f y]))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] prop:
Lemmas referenced :  pairwise-map l_member_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination functionEquality cumulativity universeEquality setEquality

Latex:
\mforall{}[T,T':Type].
    \mforall{}L:T  List.  \mforall{}f:\{t:T|  (t  \mmember{}  L)\}    {}\mrightarrow{}  T'.
        \mforall{}[P:T'  {}\mrightarrow{}  T'  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}map(f;L).    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[f  x;f  y]))



Date html generated: 2016_05_15-PM-03_59_27
Last ObjectModification: 2015_12_27-PM-03_05_52

Theory : general


Home Index