Nuprl Lemma : ppcc-test
∀[a,b,c:ℤ].  ((a + c) = (c + c) ∈ ℤ) supposing (((b + c) = (c + c) ∈ ℤ) and (a = b ∈ ℤ))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
Lemmas referenced : 
equal_wf
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
introduction, 
isect_memberFormation, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
addEquality, 
intEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((a  +  c)  =  (c  +  c))  supposing  (((b  +  c)  =  (c  +  c))  and  (a  =  b))
Date html generated:
2020_05_20-AM-08_05_04
Last ObjectModification:
2020_01_07-PM-01_12_37
Theory : general
Home
Index