Nuprl Lemma : ppcc-test

[a,b,c:ℤ].  ((a c) (c c) ∈ ℤsupposing (((b c) (c c) ∈ ℤand (a b ∈ ℤ))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  prop: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q
Lemmas referenced :  equal_wf
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality sqequalRule introduction isect_memberFormation because_Cache hypothesis hypothesisEquality addEquality intEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination

Latex:
\mforall{}[a,b,c:\mBbbZ{}].    ((a  +  c)  =  (c  +  c))  supposing  (((b  +  c)  =  (c  +  c))  and  (a  =  b))



Date html generated: 2020_05_20-AM-08_05_04
Last ObjectModification: 2020_01_07-PM-01_12_37

Theory : general


Home Index