Step
*
1
1
1
1
1
of Lemma
prime-sum-of-two-squares
1. p : Prime
2. a : ℤ
3. (2 * |a|) ≤ p
4. b : ℤ
5. (2 * |b|) ≤ p
6. ((|a| * |a|) + (|b| * |b|)) ≡ 0 mod p
7. ¬((|a| ≡ 0 mod p) ∧ (|b| ≡ 0 mod p))
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
BY
{ CaseNat 2 `p' }
1
1. p : Prime
2. a : ℤ
3. (2 * |a|) ≤ p
4. b : ℤ
5. (2 * |b|) ≤ p
6. ((|a| * |a|) + (|b| * |b|)) ≡ 0 mod p
7. ¬((|a| ≡ 0 mod p) ∧ (|b| ≡ 0 mod p))
8. p = 2 ∈ ℤ
⊢ ∃a,b:ℤ. (2 = ((a * a) + (b * b)) ∈ ℤ)
2
1. p : Prime
2. a : ℤ
3. (2 * |a|) ≤ p
4. b : ℤ
5. (2 * |b|) ≤ p
6. ((|a| * |a|) + (|b| * |b|)) ≡ 0 mod p
7. ¬((|a| ≡ 0 mod p) ∧ (|b| ≡ 0 mod p))
8. ¬(p = 2 ∈ ℤ)
⊢ ∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)
Latex:
Latex:
1. p : Prime
2. a : \mBbbZ{}
3. (2 * |a|) \mleq{} p
4. b : \mBbbZ{}
5. (2 * |b|) \mleq{} p
6. ((|a| * |a|) + (|b| * |b|)) \mequiv{} 0 mod p
7. \mneg{}((|a| \mequiv{} 0 mod p) \mwedge{} (|b| \mequiv{} 0 mod p))
\mvdash{} \mexists{}a,b:\mBbbZ{}. (p = ((a * a) + (b * b)))
By
Latex:
CaseNat 2 `p'
Home
Index