Nuprl Lemma : prime-sum-of-two-squares
∀p:Prime
  ((∃a,b:ℤ. ((¬((a ≡ 0 mod p) ∧ (b ≡ 0 mod p))) ∧ (((a * a) + (b * b)) ≡ 0 mod p)))
  ⇒ (∃a,b:ℤ. (p = ((a * a) + (b * b)) ∈ ℤ)))
Proof
Definitions occuring in Statement : 
Prime: Prime, 
eqmod: a ≡ b mod m, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
multiply: n * m, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
not: ¬A, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
Prime: Prime, 
int_upper: {i...}, 
prop: ℙ, 
false: False, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
less_than': less_than'(a;b), 
true: True, 
squash: ↓T, 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
eqmod: a ≡ b mod m, 
divides: b | a, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
sq_stable: SqStable(P), 
cand: A c∧ B, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
ge: i ≥ j 
Lemmas referenced : 
istype-int, 
eqmod_wf, 
istype-void, 
Prime_wf, 
small-eqmod, 
int_upper_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
eqmod_functionality_wrt_eqmod, 
add_functionality_wrt_eqmod, 
multiply_functionality_wrt_eqmod, 
eqmod_inversion, 
eqmod_weakening, 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
decidable__equal_int, 
intformeq_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
int_subtype_base, 
set_subtype_base, 
int_upper_wf, 
prime_wf, 
istype-int_upper, 
le_wf, 
absval_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
add_functionality_wrt_eq, 
absval_pos, 
square_non_neg, 
istype-le, 
subtype_rel_self, 
iff_weakening_equal, 
absval_mul, 
itermAdd_wf, 
int_term_value_add_lemma, 
Prime-isOdd, 
assert-isOdd, 
sq_stable_from_decidable, 
decidable__prime, 
upper_subtype_nat, 
istype-false, 
decidable__le, 
multiply-is-int-iff, 
false_wf, 
product-eq-0-mod-prime, 
nat_properties, 
int_seg_wf, 
int_seg_properties, 
mul_preserves_le, 
int_seg_subtype_nat, 
subtype_rel_sets, 
sq_stable__le, 
prime-sum-of-two-squares-lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
because_Cache, 
functionIsType, 
universeIsType, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
addEquality, 
multiplyEquality, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
minusEquality, 
inhabitedIsType, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype, 
instantiate, 
cumulativity, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
sqequalBase, 
universeEquality, 
sqequalIntensionalEquality, 
pointwiseFunctionality, 
applyLambdaEquality, 
setEquality, 
setIsType
Latex:
\mforall{}p:Prime
    ((\mexists{}a,b:\mBbbZ{}.  ((\mneg{}((a  \mequiv{}  0  mod  p)  \mwedge{}  (b  \mequiv{}  0  mod  p)))  \mwedge{}  (((a  *  a)  +  (b  *  b))  \mequiv{}  0  mod  p)))
    {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)))))
Date html generated:
2020_05_20-AM-08_08_27
Last ObjectModification:
2019_11_27-PM-02_22_09
Theory : general
Home
Index