Nuprl Lemma : prime-sum-of-two-squares-lemma

p:Prime. ∀c:ℕ. ∀a,b:ℤ.
  (((((a a) (b b)) (p c) ∈ ℤ) ∧ 0 < c ∧ c < p)  (∃a,b:ℤ(p ((a a) (b b)) ∈ ℤ)))


Proof




Definitions occuring in Statement :  Prime: Prime nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  ge: i ≥  so_apply: x[s] so_lambda: λ2x.t[x] squash: T sq_stable: SqStable(P) nat: less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a and: P ∧ Q lelt: i ≤ j < k int_upper: {i...} false: False Prime: Prime int_seg: {i..j-} guard: {T} member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] sq_type: SQType(T) nat_plus: + cand: c∧ B divides: a eqmod: a ≡ mod m iff: ⇐⇒ Q true: True uiff: uiff(P;Q) less_than: a < b gt: i > j rev_implies:  Q nequal: a ≠ b ∈  int_nzero: -o
Lemmas referenced :  Prime_wf int_term_value_add_lemma itermAdd_wf nat_properties nat_wf primrec-wf2 set_wf lelt_wf decidable__lt equal-wf-T-base exists_wf all_wf less_than_wf equal-wf-base-T int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_not_lemma intformeq_wf itermSubtract_wf intformnot_wf decidable__le le_wf int_upper_subtype_nat decidable__prime prime_wf sq_stable_from_decidable false_wf int_seg_subtype subtract_wf decidable__equal_int int_seg_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat int_upper_properties int_seg_properties int_subtype_base subtype_base_sq int_term_value_mul_lemma itermMultiply_wf small-eqmod int_term_value_minus_lemma itermMinus_wf add_functionality_wrt_eqmod multiply_functionality_wrt_eqmod eqmod_functionality_wrt_eqmod eqmod_weakening mul_preserves_le iff_weakening_equal square_non_neg absval_pos mul_bounds_1a absval_wf squash_wf true_wf absval_mul multiply-is-int-iff mul_nat_plus mul_cancel_in_lt int_entire less_than_transitivity1 mul_preserves_lt gt_wf neg_mul_arg_bounds nequal_wf equal-wf-base mul_nzero mul_cancel_in_eq eqmod_inversion add-zero add-inverse eqmod_wf equal_wf divides-prime assoced_elim
Rules used in proof :  addEquality functionEquality multiplyEquality closedConclusion baseApply productEquality hypothesis_subsumption levelHypothesis imageElimination baseClosed imageMemberEquality dependent_set_memberEquality applyLambdaEquality equalitySymmetry equalityTransitivity applyEquality addLevel unionElimination independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_functionElimination approximateComputation independent_isectElimination productElimination rename setElimination hypothesis hypothesisEquality because_Cache natural_numberEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution cumulativity instantiate minusEquality promote_hyp pointwiseFunctionality universeEquality inrFormation

Latex:
\mforall{}p:Prime.  \mforall{}c:\mBbbN{}.  \mforall{}a,b:\mBbbZ{}.
    (((((a  *  a)  +  (b  *  b))  =  (p  *  c))  \mwedge{}  0  <  c  \mwedge{}  c  <  p)  {}\mRightarrow{}  (\mexists{}a,b:\mBbbZ{}.  (p  =  ((a  *  a)  +  (b  *  b)))))



Date html generated: 2018_05_21-PM-07_24_59
Last ObjectModification: 2018_01_01-PM-01_36_53

Theory : general


Home Index