Nuprl Lemma : small-eqmod
∀m:ℕ+. ∀a:ℤ.  ∃b:ℤ. (((2 * |b|) ≤ m) ∧ (b ≡ a mod m))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m, 
absval: |i|, 
nat_plus: ℕ+, 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
multiply: n * m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
nat_plus: ℕ+, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
squash: ↓T, 
prop: ℙ, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than: a < b, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
less_than': less_than'(a;b), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
eqmod: a ≡ b mod m, 
divides: b | a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_lower: {...i}, 
ge: i ≥ j , 
gt: i > j
Lemmas referenced : 
decidable__le, 
istype-int, 
nat_plus_wf, 
rem_bounds_1, 
istype-le, 
remainder_wfa, 
nat_plus_inc_int_nzero, 
le_wf, 
squash_wf, 
true_wf, 
absval_pos, 
remainder_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rem-eqmod, 
absval_wf, 
eqmod_wf, 
absval_unfold, 
subtract_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
istype-top, 
intformeq_wf, 
intformnot_wf, 
intformle_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
int_subtype_base, 
nequal_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
eqmod_functionality_wrt_eqmod, 
subtract_functionality_wrt_eqmod, 
eqmod_weakening, 
decidable__equal_int, 
set_subtype_base, 
rem_bounds_2, 
absval_neg, 
itermAdd_wf, 
int_term_value_add_lemma, 
add_functionality_wrt_eqmod, 
add-zero, 
eqmod_refl, 
eqmod-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
universeIsType, 
isectElimination, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
applyEquality, 
sqequalRule, 
productElimination, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
productIsType, 
minusEquality, 
equalityElimination, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
equalityIstype, 
promote_hyp, 
cumulativity, 
closedConclusion, 
sqequalBase, 
intEquality, 
baseApply, 
addEquality
Latex:
\mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbZ{}.    \mexists{}b:\mBbbZ{}.  (((2  *  |b|)  \mleq{}  m)  \mwedge{}  (b  \mequiv{}  a  mod  m))
Date html generated:
2020_05_19-PM-10_01_07
Last ObjectModification:
2019_12_31-PM-03_28_17
Theory : num_thy_1
Home
Index