Nuprl Lemma : small-eqmod

m:ℕ+. ∀a:ℤ.  ∃b:ℤ(((2 |b|) ≤ m) ∧ (b ≡ mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m absval: |i| nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] nat: subtype_rel: A ⊆B and: P ∧ Q nat_plus: + exists: x:A. B[x] cand: c∧ B squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False less_than': less_than'(a;b) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b int_nzero: -o nequal: a ≠ b ∈  eqmod: a ≡ mod m divides: a so_lambda: λ2x.t[x] so_apply: x[s] int_lower: {...i} ge: i ≥  gt: i > j
Lemmas referenced :  decidable__le istype-int nat_plus_wf rem_bounds_1 istype-le remainder_wfa nat_plus_inc_int_nzero le_wf squash_wf true_wf absval_pos remainder_wf subtype_rel_self iff_weakening_equal rem-eqmod absval_wf eqmod_wf absval_unfold subtract_wf lt_int_wf eqtt_to_assert assert_of_lt_int nat_plus_properties full-omega-unsat intformand_wf intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than istype-top intformeq_wf intformnot_wf intformle_wf itermMultiply_wf int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_mul_lemma int_subtype_base nequal_wf itermMinus_wf int_term_value_minus_lemma eqmod_functionality_wrt_eqmod subtract_functionality_wrt_eqmod eqmod_weakening decidable__equal_int set_subtype_base rem_bounds_2 absval_neg itermAdd_wf int_term_value_add_lemma add_functionality_wrt_eqmod add-zero eqmod_refl eqmod-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality hypothesisEquality hypothesis unionElimination universeIsType isectElimination dependent_set_memberEquality_alt multiplyEquality applyEquality sqequalRule productElimination setElimination rename dependent_pairFormation_alt lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry inhabitedIsType imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination independent_functionElimination independent_pairFormation because_Cache productIsType minusEquality equalityElimination approximateComputation int_eqEquality Error :memTop,  voidElimination lessCases isect_memberFormation_alt axiomSqEquality isect_memberEquality_alt isectIsTypeImplies equalityIstype promote_hyp cumulativity closedConclusion sqequalBase intEquality baseApply addEquality

Latex:
\mforall{}m:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbZ{}.    \mexists{}b:\mBbbZ{}.  (((2  *  |b|)  \mleq{}  m)  \mwedge{}  (b  \mequiv{}  a  mod  m))



Date html generated: 2020_05_19-PM-10_01_07
Last ObjectModification: 2019_12_31-PM-03_28_17

Theory : num_thy_1


Home Index