Nuprl Lemma : subtract_functionality_wrt_eqmod

m,a,a',b,b':ℤ.  ((a ≡ a' mod m)  (b ≡ b' mod m)  ((a b) ≡ (a' b') mod m))


Proof




Definitions occuring in Statement :  eqmod: a ≡ mod m all: x:A. B[x] implies:  Q subtract: m int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  eqmod_wf subtract_wf eqmod_functionality_wrt_eqmod subtract-elim add_functionality_wrt_eqmod minus_functionality_wrt_eqmod eqmod_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality addEquality minusEquality because_Cache dependent_functionElimination independent_isectElimination independent_functionElimination productElimination

Latex:
\mforall{}m,a,a',b,b':\mBbbZ{}.    ((a  \mequiv{}  a'  mod  m)  {}\mRightarrow{}  (b  \mequiv{}  b'  mod  m)  {}\mRightarrow{}  ((a  -  b)  \mequiv{}  (a'  -  b')  mod  m))



Date html generated: 2016_05_14-PM-04_22_22
Last ObjectModification: 2015_12_26-PM-08_18_23

Theory : num_thy_1


Home Index