Nuprl Lemma : assert-isOdd
∀n:ℤ. (↑isOdd(n) 
⇐⇒ ∃k:ℤ. (n = ((2 * k) + 1) ∈ ℤ))
Proof
Definitions occuring in Statement : 
isOdd: isOdd(n)
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
isOdd: isOdd(n)
, 
modulus: a mod n
, 
absval: |i|
, 
eq_int: (i =z j)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
int_lower: {...i}
, 
ge: i ≥ j 
, 
gt: i > j
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
eqmod: a ≡ b mod m
, 
divides: b | a
Lemmas referenced : 
modulus_wf, 
assert_of_eq_int, 
modulus-equal-iff-eqmod, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
false_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
itermMultiply_wf, 
itermAdd_wf, 
multiply-is-int-iff, 
add-is-int-iff, 
rem_bounds_2, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
equal-wf-base, 
less_than_wf, 
le_wf, 
rem_bounds_1, 
decidable__le, 
nequal_wf, 
true_wf, 
int_subtype_base, 
subtype_base_sq, 
div_rem_sum, 
equal_wf, 
exists_wf, 
isOdd_wf, 
assert_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
lambdaEquality, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
addLevel, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
productElimination, 
inlFormation, 
baseApply, 
closedConclusion, 
applyEquality, 
because_Cache, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
inrFormation, 
minusEquality, 
divideEquality, 
pointwiseFunctionality, 
rename, 
promote_hyp, 
callbyvalueReduce, 
sqleReflexivity
Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}isOdd(n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}k:\mBbbZ{}.  (n  =  ((2  *  k)  +  1)))
Date html generated:
2016_05_14-PM-04_23_29
Last ObjectModification:
2016_01_14-PM-11_39_46
Theory : num_thy_1
Home
Index