Nuprl Lemma : assert-isOdd

n:ℤ(↑isOdd(n) ⇐⇒ ∃k:ℤ(n ((2 k) 1) ∈ ℤ))


Proof




Definitions occuring in Statement :  isOdd: isOdd(n) assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A uimplies: supposing a sq_type: SQType(T) guard: {T} false: False decidable: Dec(P) or: P ∨ Q nat: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top isOdd: isOdd(n) modulus: mod n absval: |i| eq_int: (i =z j) assert: b ifthenelse: if then else fi  bfalse: ff int_lower: {...i} ge: i ≥  gt: i > j uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) eqmod: a ≡ mod m divides: a
Lemmas referenced :  modulus_wf assert_of_eq_int modulus-equal-iff-eqmod int_term_value_subtract_lemma itermSubtract_wf subtract_wf false_wf int_term_value_mul_lemma int_term_value_add_lemma itermMultiply_wf itermAdd_wf multiply-is-int-iff add-is-int-iff rem_bounds_2 int_formula_prop_wf int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int equal-wf-base less_than_wf le_wf rem_bounds_1 decidable__le nequal_wf true_wf int_subtype_base subtype_base_sq div_rem_sum equal_wf exists_wf isOdd_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality sqequalRule lambdaEquality addEquality multiplyEquality natural_numberEquality dependent_set_memberEquality addLevel instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination unionElimination introduction imageMemberEquality baseClosed productElimination inlFormation baseApply closedConclusion applyEquality because_Cache imageElimination dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll inrFormation minusEquality divideEquality pointwiseFunctionality rename promote_hyp callbyvalueReduce sqleReflexivity

Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}isOdd(n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}k:\mBbbZ{}.  (n  =  ((2  *  k)  +  1)))



Date html generated: 2016_05_14-PM-04_23_29
Last ObjectModification: 2016_01_14-PM-11_39_46

Theory : num_thy_1


Home Index