Nuprl Lemma : product-equipollent-tuple

[A,B:Type].  A × tuple-type([A; B])


Proof




Definitions occuring in Statement :  equipollent: B tuple-type: tuple-type(L) cons: [a b] nil: [] uall: [x:A]. B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T top: Top ifthenelse: if then else fi  bfalse: ff btrue: tt uall: [x:A]. B[x] uimplies: supposing a
Lemmas referenced :  tupletype_cons_lemma null_cons_lemma null_nil_lemma tupletype_nil_lemma equipollent_weakening_ext-eq ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation universeEquality productEquality hypothesisEquality isectElimination independent_isectElimination

Latex:
\mforall{}[A,B:Type].    A  \mtimes{}  B  \msim{}  tuple-type([A;  B])



Date html generated: 2016_05_15-PM-05_50_28
Last ObjectModification: 2015_12_27-PM-00_27_29

Theory : general


Home Index