Nuprl Lemma : product-equipollent-tuple
∀[A,B:Type].  A × B ~ tuple-type([A; B])
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
tuple-type: tuple-type(L)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
tupletype_cons_lemma, 
null_cons_lemma, 
null_nil_lemma, 
tupletype_nil_lemma, 
equipollent_weakening_ext-eq, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
universeEquality, 
productEquality, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].    A  \mtimes{}  B  \msim{}  tuple-type([A;  B])
Date html generated:
2016_05_15-PM-05_50_28
Last ObjectModification:
2015_12_27-PM-00_27_29
Theory : general
Home
Index