Nuprl Lemma : ratio-dist_wf
∀[a,p:ℕ]. ∀[b,q:ℕ+]. ∀[m:ℕ].  (|a/b - p/q| < 1/m ∈ ℙ)
Proof
Definitions occuring in Statement : 
ratio-dist: |a/b - p/q| < 1/m
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
ratio-dist: |a/b - p/q| < 1/m
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
less_than_wf, 
absval_wf, 
subtract_wf, 
nat_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,p:\mBbbN{}].  \mforall{}[b,q:\mBbbN{}\msupplus{}].  \mforall{}[m:\mBbbN{}].    (|a/b  -  p/q|  <  1/m  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-04_43_20
Last ObjectModification:
2015_12_27-PM-02_39_30
Theory : general
Home
Index