Nuprl Lemma : ratio-dist_wf

[a,p:ℕ]. ∀[b,q:ℕ+]. ∀[m:ℕ].  (|a/b p/q| < 1/m ∈ ℙ)


Proof




Definitions occuring in Statement :  ratio-dist: |a/b p/q| < 1/m nat_plus: + nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ratio-dist: |a/b p/q| < 1/m uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + subtype_rel: A ⊆B
Lemmas referenced :  less_than_wf absval_wf subtract_wf nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin multiplyEquality setElimination rename hypothesisEquality hypothesis applyEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[a,p:\mBbbN{}].  \mforall{}[b,q:\mBbbN{}\msupplus{}].  \mforall{}[m:\mBbbN{}].    (|a/b  -  p/q|  <  1/m  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-04_43_20
Last ObjectModification: 2015_12_27-PM-02_39_30

Theory : general


Home Index