Nuprl Lemma : rel-preserving-composes
∀[T1,T2,T3:Type]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type]. ∀[R3:T3 ⟶ T3 ⟶ ℙ].
  ∀f:T2 ⟶ T1. ∀g:T3 ⟶ T2.
    (λx.f[x]:T2->T1 takes R2 into R1*) 
⇒ λx.g[x]:T3->T2 takes R3 into R2*) 
⇒ λx.f[g[x]]:T3->T1 takes R3 into R1*))
Proof
Definitions occuring in Statement : 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
rel-preserving-star, 
rel-preserving_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
hypothesis, 
addLevel, 
levelHypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache
Latex:
\mforall{}[T1,T2,T3:Type].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].  \mforall{}[R3:T3  {}\mrightarrow{}  T3  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:T2  {}\mrightarrow{}  T1.  \mforall{}g:T3  {}\mrightarrow{}  T2.
        (\mlambda{}x.f[x]:T2->T1  takes  R2  into  R1*)
        {}\mRightarrow{}  \mlambda{}x.g[x]:T3->T2  takes  R3  into  R2*)
        {}\mRightarrow{}  \mlambda{}x.f[g[x]]:T3->T1  takes  R3  into  R1*))
Date html generated:
2016_05_15-PM-05_40_59
Last ObjectModification:
2015_12_27-PM-00_32_38
Theory : general
Home
Index