Nuprl Lemma : rel-preserving-star
∀[T1,T2:Type]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type].
  ∀f:T2 ⟶ T1. (λx.f[x]:T2->T1 takes R2 into R1*) 
⇒ λx.f[x]:T2->T1 takes R2^* into R1*))
Proof
Definitions occuring in Statement : 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
rel_star: R^*
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
rel_star: R^*
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
rel_star_wf, 
rel-preserving_wf, 
infix_ap_wf, 
rel_exp_wf, 
false_wf, 
le_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
all_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_wf, 
rel_star_weakening, 
and_wf, 
equal_wf, 
eq_int_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
int_subtype_base, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
rel_star_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
thin, 
applyEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
rename, 
setElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalitySymmetry, 
applyLambdaEquality, 
equalityTransitivity, 
baseClosed, 
impliesFunctionality
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].
    \mforall{}f:T2  {}\mrightarrow{}  T1
        (\mlambda{}x.f[x]:T2->T1  takes  R2  into  R1*)  {}\mRightarrow{}  \mlambda{}x.f[x]:T2->T1  takes  R2\^{}*  into  R1*))
Date html generated:
2018_05_21-PM-08_00_45
Last ObjectModification:
2017_07_26-PM-05_37_36
Theory : general
Home
Index