Nuprl Lemma : rel-preserving-star

[T1,T2:Type]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type].
  ∀f:T2 ⟶ T1. x.f[x]:T2->T1 takes R2 into R1*)  λx.f[x]:T2->T1 takes R2^* into R1*))


Proof




Definitions occuring in Statement :  rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*) rel_star: R^* uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*) rel_star: R^* infix_ap: y exists: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  rel_star_wf rel-preserving_wf infix_ap_wf rel_exp_wf false_wf le_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf all_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma set_wf less_than_wf primrec-wf2 nat_wf rel_star_weakening and_wf equal_wf eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-base int_subtype_base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot rel_star_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin applyEquality cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality hypothesis lambdaEquality functionEquality universeEquality dependent_functionElimination independent_functionElimination instantiate because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation rename setElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalitySymmetry applyLambdaEquality equalityTransitivity baseClosed impliesFunctionality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].
    \mforall{}f:T2  {}\mrightarrow{}  T1
        (\mlambda{}x.f[x]:T2->T1  takes  R2  into  R1*)  {}\mRightarrow{}  \mlambda{}x.f[x]:T2->T1  takes  R2\^{}*  into  R1*))



Date html generated: 2018_05_21-PM-08_00_45
Last ObjectModification: 2017_07_26-PM-05_37_36

Theory : general


Home Index