Nuprl Lemma : rel_star_weakening
∀[T:Type]. ∀[x,y:T]. ∀[R:T ⟶ T ⟶ ℙ].  x (R^*) y supposing x = y ∈ T
Proof
Definitions occuring in Statement : 
rel_star: R^*, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
rel_star: R^*, 
infix_ap: x f y, 
exists: ∃x:A. B[x], 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
rel_exp: R^n, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
btrue: tt
Lemmas referenced : 
false_wf, 
le_wf, 
rel_exp_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
sqequalRule, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    x  rel\_star(T;  R)  y  supposing  x  =  y
Date html generated:
2016_05_14-AM-06_04_07
Last ObjectModification:
2015_12_26-AM-11_33_24
Theory : relations
Home
Index