Nuprl Lemma : rel-preserving_wf

[T1,T2:Type]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type]. ∀[f:T2 ⟶ T1].  x.f[x]:T2->T1 takes R2 into R1*) ∈ ℙ)


Proof




Definitions occuring in Statement :  rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*) so_lambda: λ2x.t[x] implies:  Q prop: infix_ap: y subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  all_wf rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality applyEquality hypothesis because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality cumulativity universeEquality

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].  \mforall{}[f:T2  {}\mrightarrow{}  T1].
    (\mlambda{}x.f[x]:T2->T1  takes  R2  into  R1*)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-05_40_22
Last ObjectModification: 2015_12_27-PM-02_05_46

Theory : general


Home Index