Nuprl Lemma : rel-preserving_wf
∀[T1,T2:Type]. ∀[R1:T1 ⟶ T1 ⟶ Type]. ∀[R2:T2 ⟶ T2 ⟶ Type]. ∀[f:T2 ⟶ T1].  (λx.f[x]:T2->T1 takes R2 into R1*) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel-preserving: λx.f[x]:T2->T1 takes R2 into R1*)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
rel_star_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesis, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[R1:T1  {}\mrightarrow{}  T1  {}\mrightarrow{}  Type].  \mforall{}[R2:T2  {}\mrightarrow{}  T2  {}\mrightarrow{}  Type].  \mforall{}[f:T2  {}\mrightarrow{}  T1].
    (\mlambda{}x.f[x]:T2->T1  takes  R2  into  R1*)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-05_40_22
Last ObjectModification:
2015_12_27-PM-02_05_46
Theory : general
Home
Index